D. H. Bailey, A compendium of BBP-type formulas for mathematical constants, 2013.

D. H. Bailey and P. B. Borwein, Experimental Mathematics: Recent Developments and Future Outlook, Mathematics Unlimited 2001 and Beyond, pp.51-66, 2001.

D. H. Bailey and P. B. Borwein, Experimental Mathematics: Exa,ples, methods and implications, pp.502-514, 2005.

D. H. Bailey, P. B. Borwein, and S. Plouffe, On the Rapid Computation of Various Polylogarithmic Constants, Mathematics of Computation, vol.66, pp.903-913, 1997.

D. H. Bailey and E. Crandall, On the random character of fundamental constant expansions, Experimental Mathematics, vol.10, pp.175-190, 2001.

F. Béllard, Pi formulas, algorithms and computations, 2019.

D. J. Broadhurst, Polylogarithmic ladders, hypergeometric series and the ten millionth digits of ?(3) and ?, p.9803067, 1998.

É. Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo, vol.27, pp.247-271, 1909.

G. Boros and V. H. Moll, , 2004.

D. V. Chudnovsky and G. V. Chudnovsky, Approximation and complex multiplication according to Ramanujan, Ramanujan revisited: Proceedings of the centennial conference, pp.375-472, 1988.

J. C. Lagarias, On the normality of arithmetical constants, Experimental Math, vol.10, pp.355-368, 2001.

R. Mathar, Series of reciprocal powers of k-almost primes, 2008.

V. Muñoz and R. Pérez-marco, Unified Treatment of Explicit and Trace Formulas via Poisson-Newton formula, Comm. Math. Phys, vol.336, pp.1201-1230, 2015.

V. Muñoz and R. Pérez-marco, Weierstrass constants and exponential periods, in preparation, 2019.

L. A. Medina, V. H. Moll, and E. S. Rowland, Iterated primitives of logarithmic powers, International Journal of Number Theory, vol.7, issue.3, pp.623-634, 2011.

M. Queffélec, Old and new results on normality, IMS Lecture Notes, Monographs S, vol.48, pp.225-236, 2006.

S. Ramanujan, Modular equations and approximations to ?, Quart. J. Math, vol.45, pp.350-372, 1914.

C. Störmer, Sur l'application de la théorie des nombres entiers complexesà la solution en nombres rationnels x 1 , x 2 , . . . xn, c 1 , c 2 , . . . , cn, k de l'équation: c 1 arctan x 1 + c 2 arctan x 2 +, + cn arctan xn = k ? 4, vol.3, pp.3-95, 1896.

C. Störmer,

, Bull. Soc. Math. France, vol.27, pp.160-170, 1899.

M. Tam, BBP-type Formula Database, 2019.

, WIKIPEDIA; Natural logarithm of, vol.2