E. Ahmed, S. A. Hassan, C. Japhet, M. Kern, and M. Vohralík, A posteriori error estimates and stopping criteria for space-time domain decomposition for two-phase flow between different rock types, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01540956

E. Ahmed, J. Jaffré, and J. E. Roberts, A reduced fracture model for two-phase flow with different rock types, Math. Comput. Simulation, pp.49-70, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01249322

A. Oulhaj, Numerical analysis of a finite volume scheme for a seawater intrusion model with cross-diffusion in an unconfined aquifer, Numerical Methods for Partial Differential Equations, vol.34, pp.857-880, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01432197

A. Hammou-oulhaj, . Ahmed, C. Cancès, C. , and C. , Numerical analysis of a nonlinearly stable and positive control volume finite element scheme for richards equation with anisotropy, ESAIM: M2AN, vol.52, pp.1533-1567, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01372954

S. A. Hassan, C. Japhet, M. Kern, and M. Vohralík, A posteriori stopping criteria for optimized Schwarz domain decomposition algorithms in mixed formulations, Comput. Methods Appl. Math, vol.18, pp.495-519, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01529532

S. A. Hassan, C. Japhet, and M. Vohralík, A posteriori stopping criteria for space-time domain decomposition for the heat equation in mixed formulations, Electron. Trans. Numer. Anal, vol.49, pp.151-181, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01586862

. Brahim-amaziane, L. Antontsev, A. Pankratov, and . Piatnitski, Homogenization of immiscible compressible two-phase flow in porous media: application to gas migration in a nuclear waste repository, Multiscale Modeling & Simulation, vol.8, pp.2023-2047, 2010.

. B-amaziane, H. Bourgeat, and . Amri, Existence of solutions to various rock types odel model of two-phase flow in porous media, Applicable Analysis, vol.60, pp.121-132, 1996.

M. E. Brahim-amaziane, M. Ossmani, and . Jurak, Numerical simulation of gas migration through engineered and geological barriers for a deep repository for radioactive waste, Computing and Visualization in Science, vol.15, pp.3-20, 2012.

L. Ambrosio and G. Maso, A general chain rule for distributional derivatives, Proc. Amer. Math. Soc, vol.108, pp.691-702, 1990.

B. Andreianov, K. Brenner, and C. Cancès, Approximating the vanishing capillarity limit of two-phase flow in multi-dimensional heterogeneous porous medium, ZAMM Z. Angew. Math. Mech, vol.94, pp.655-667, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00744359

B. Andreianov, C. Cancès, and A. Moussa, A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs, J. Funct. Anal, vol.273, pp.3633-3670, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01142499

B. Andreianov and M. K. Gazibo, Entropy formulation of degenerate parabolic equation with zero-flux boundary condition, Zeitschrift für angewandte Mathematik und Physik, vol.64, pp.1471-1491, 2013.

K. Aziz and A. Settari, Petroleum reservoir simulation, 1979.

D. Bennequin, M. J. Gander, and L. Halpern, A homographic best approximation problem with application to optimized Schwarz waveform relaxation, Math. Comp, vol.78, pp.185-223, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00111643

H. Berninger, S. Loisel, and O. Sander, The 2-Lagrange multiplier method applied to nonlinear transmission problems for the Richards equation in heterogeneous soil with cross points, SIAM J. Sci. Comput, vol.36, pp.2166-2198, 2014.

P. Berthe, C. Japhet, and P. Omnes, Space-Time Domain Decomposition with Finite Volumes for Porous Media Applications, in Domain Decomposition Methods in Science and Engineering XXI, Lecture Notes in Computational Science and Engineering, vol.98, pp.483-490, 2014.

M. Bertsch, . Dal-passo, and . Van-duijn, Analysis of oil trapping in porous media flow, SIAM Journal on Mathematical Analysis, vol.35, pp.245-267, 2003.

A. Bourgeat and M. Jurak, A two level scaling-up method for multiphase flow in porous media; numerical validation and comparison with other methods, Computational geosciences, vol.14, pp.1-14, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00965401

K. Brenner, C. Cancès, and D. Hilhorst, Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure, Computational Geosciences, vol.17, pp.573-597, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00675681

F. Caetano, J. Martin, L. Gander, J. Halpern, and . Szeftel, Schwarz waveform relaxation algorithms for semilinear reaction-diffusion equations, NHM, vol.5, pp.487-505, 2010.

C. Cancès, Nonlinear parabolic equations with spatial discontinuities, NoDEA Nonlinear Differential Equations Appl, vol.15, pp.427-456, 2008.

, Finite volume scheme for two-phase flows in heterogeneous porous media involving capillary pressure discontinuities, M2AN Math. Model. Numer. Anal, vol.43, pp.973-1001, 2009.

C. Cances, On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types, NHM, vol.5, pp.635-647, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01713559

C. Cancès, T. Gallouët, and A. Porretta, Two-phase flows involving capillary barriers in heterogeneous porous media, Interfaces Free Bound, vol.11, pp.239-258, 2009.

C. Cancès, M. Iuliu-sorin-pop, and . Vohralík, An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow, Math. Comp, vol.83, pp.153-188, 2014.

G. Chavent and J. Jaffré, Mathematical models and finite elements for reservoir simulation: single phase, multiphase and multicomponent flows through porous media, 1986.

P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, 2013.

D. A. Di-pietro, E. Flauraud, M. Vohralík, and S. Yousef, A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media, J. Comput. Phys, vol.276, pp.163-187, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00839487

P. Victorita-dolean, F. Jolivet, and . Nataf, An introduction to domain decomposition methods, Philadelphia, PA, 2015. Algorithms, theory, and parallel implementation

G. Enchéry, R. Eymard, and A. Michel, Numerical approximation of a two-phase flow problem in a porous medium with discontinuous capillary forces, SIAM J. Numer. Anal, vol.43, pp.2402-2422, 2006.

A. Ern, I. Mozolevski, and L. Schuh, Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures, Computer methods in applied mechanics and engineering, vol.199, pp.1491-1501, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00368026

R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, in Handbook of numerical analysis, vol.7, pp.713-1018, 2000.

R. Eymard, T. Gallouët, D. Hilhorst, and Y. Slimane, Finite volumes and nonlinear diffusion equations, RAIRO-Modélisation mathématique et analyse numérique, vol.32, pp.747-761, 1998.

M. J. Gander, Optimized Schwarz methods, SIAM J. Numer. Anal, vol.44, pp.699-731, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00107263

M. J. Gander and L. Halpern, Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems, SIAM J. Numer. Anal, vol.45, pp.666-697, 2007.

M. J. Gander, L. Halpern, and F. Nataf, Optimal Schwarz waveform relaxation for the one dimensional wave equation, SIAM J. Numer. Anal, vol.41, pp.1643-1681, 2003.

J. Martin, C. Gander, and . Japhet, PANG: software for nonmatching grid projections in 2D and 3D with linear complexity, ACM Trans. Math. Software, vol.932, issue.6, p.25, 2013.

M. J. Gander, C. Japhet, Y. Maday, F. Nataf, ;. et al., A New Cement to Glue Nonconforming Grids with Robin Interface Conditions: The Finite Element Case, Domain Decomposition Methods in Science and Engineering, pp.259-266, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00112937

B. Ganis, K. Kumar, G. Pencheva, M. F. Wheeler, and I. Yotov, A global Jacobian method for mortar discretizations of a fully implicit two-phase flow model, Multiscale Model. Simul, vol.12, pp.1401-1423, 2014.

F. Haeberlein, L. Halpern, and A. Michel, -Schwarz optimised waveform relaxation Krylov accelerators for nonlinear reactive transport, Domain decomposition methods in science and engineering XX, vol.91, pp.387-394, 2013.

, Schwarz Waveform Relaxation and Krylov Accelerators for Reactive Transport. working paper or preprint, 2015.

L. Halpern and F. Hubert, A finite volume Ventcell-Schwarz algorithm for advection-diffusion equations, SIAM Journal on Numerical Analysis, vol.52, pp.1269-1291, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01271249

L. Halpern, C. Japhet, and J. Szeftel, Discontinuous Galerkin and nonconforming in time optimized Schwarz waveform relaxation, pp.133-140, 2011.

, Optimized Schwarz waveform relaxation and discontinuous Galerkin time stepping for heterogeneous problems, SIAM J. Numer. Anal, vol.50, pp.2588-2611, 2012.

T. Hoang, J. Jaffré, C. Japhet, M. Kern, and J. E. Roberts, Space-time domain decomposition methods for diffusion problems in mixed formulations, SIAM Journal on Numerical Analysis, vol.51, pp.3532-3559, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00803796

T. Hoang, C. Japhet, M. Kern, and J. E. Roberts, Space-time domain decomposition for advection-diffusion problems in mixed formulations, Mathematics and Computers in SImulation, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01296348

T. T. Hoang, C. Japhet, M. Kern, J. Roberts, ;. Xxii et al., Ventcell conditions with mixed formulations for flow in porous media, Decomposition Methods in Science and Engineering, vol.104, pp.531-540, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01113964

C. Japhet and F. Nataf, The best interface conditions for domain decomposition methods: absorbing boundary conditions, in Absorbing Boundaries and Layers, Domain Decomposition Methods, Nova Sci. Publ, pp.348-373, 2001.

F. Lemarié, L. Debreu, and E. Blayo, Toward an optimized global-in-time schwarz algorithm for diffusion equations with discontinuous and spatially variable coefficients, Electron. Trans. Numer. Anal, pp.148-169, 2013.

V. Martin, An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions, Appl. Numer. Math, vol.52, pp.401-428, 2005.

I. Mozolevski and L. Schuh, Numerical simulation of two-phase immiscible incompressible flows in heterogeneous porous media with capillary barriers, Journal of Computational and Applied Mathematics, vol.242, pp.12-27, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00691312

J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Computer Science and Applied Mathematics, 1970.

K. Santugini, Algorithm for Cell Centered Finite Volume Based Domain Decomposition Methods: The DCS-RJMin Algorithm, Domain Decomposition Methods in Science and Engineering XXII, pp.379-387, 2016.

J. O. Skogestad, E. Keilegavlen, and J. M. Nordbotten, Domain decomposition strategies for nonlinear flow problems in porous media, J. Comput. Phys, vol.234, pp.439-451, 2013.

, Two-scale preconditioning for two-phase nonlinear flows in porous media, Transp. Porous Media, vol.114, pp.485-503, 2016.

C. J. Van-duijn, J. Molenaar, and M. J. De-neef, The effect of capillary forces on immiscible two-phase flow in heterogeneous porous media, Transport in Porous Media, vol.21, pp.71-93, 1995.

M. Vohralík and M. F. Wheeler, A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows, Comput. Geosci, vol.17, pp.789-812, 2013.

I. Yotov, A mixed finite element discretization on non-matching multiblock grids for a degenerate parabolic equation arising in porous media flow, East-West J. Numer. Math, vol.5, pp.211-230, 1997.

I. Yotov, Interface solvers and preconditioners of domain decomposition type for multiphase flow in multiblock porous media, Scientific computing and applications, vol.7, pp.157-167, 2001.