D. and J. Ackermann, Sampled-Data Control Systems: Analysis and Synthesis, Robust System Design, vol.1, 1983.

V. Andrieu and M. Nadri, Observer design for Lipschitz systems with discrete-time measurements, 49th IEEE Conference on Decision and Control (CDC), pp.6522-6527, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00519361

G. Bastin and J. Coron, Stability and boundary stabilization of 1-d hyperbolic systems, vol.88, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01449504

Y. Chitour, S. Marx, and C. Prieur, L p -asymptotic stability analysis of a 1D wave equation with a nonlinear damping

R. Datko, Extending a theorem of A. M. Liapunov to Hilbert space, Journal of Mathematical Analysis and Applications, vol.32, pp.610-616, 1970.

H. Frankowska, A priori estimates for operational differential inclusions, Journal of Differential Equations, vol.84, issue.1, pp.100-128, 1990.

E. Fridman, A refined input delay approach to sampled-data control, Automatica, vol.46, issue.2, pp.421-427, 2010.

J. W. Hagood and B. S. Thomson, Recovering a function from a Dini derivative, American Mathematical Monthly, vol.113, issue.1, pp.34-46, 2006.

I. Haidar, P. Mason, and M. Sigalotti, Converse Lyapunov-Krasovskii theorems for uncertain retarded differential equations, Automatica, vol.62, pp.263-273, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00924252

I. Haidar, P. Mason, and M. Sigalotti, Stability of interconnected uncertain delay systems: a converse Lyapunov approach, Delays and Interconnections: Methodology, Algorithms and Applications, vol.10, 2019.

K. Jack, . Hale, M. Sjoerd, and . Verduyn-lunel, Introduction to functional differential equations, vol.99, 1993.

M. Falk, M. Hante, and . Sigalotti, Converse Lyapunov theorems for switched systems in Banach and Hilbert spaces, SIAM J. Control Optim, vol.49, issue.2, pp.752-770, 2011.

L. Hetel, C. Fiter, H. Omran, A. Seuret, E. Fridman et al., Recent developments on the stability of systems with aperiodic sampling: An overview, Automatica, vol.76, pp.309-335, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01363448

A. Ichikawa, Equivalence of L p stability and exponential stability for a class of nonlinear semigroups, Nonlinear Analysis, Theory, Methods and Applications, vol.8, pp.805-815, 1984.

S. Israwi and H. Kalisch, Approximate conservation laws in the KdV equation, Physics Letters A, vol.383, issue.9, pp.854-858, 2019.

B. Jacob, A. Mironchenko, J. R. Partington, and F. Wirth, Non-coercive Lyapunov functions for input-to-state stability of infinite-dimensional systems

B. Jacob, A. Mironchenko, J. R. Partington, and F. Wirth, Remarks on input-tostate stability and non-coercive Lyapunov functions, 57th IEEE Conference on Decision and Control (CDC), pp.4803-4808, 2018.

I. Karafyllis, Lyapunov theorems for systems described by RFDEs, Nonlinear Analysis: Theory, Methods & Applications, vol.64, pp.590-617, 2006.

I. Karafyllis and C. Kravaris, From continuous-time design to sampled-data design of observers, IEEE Transactions on Automatic Control, vol.54, issue.9, pp.2169-2174, 2009.

I. Karafyllis and M. Krstic, Nonlinear stabilization under sampled and delayed measurements, and with inputs subject to delay and zero-order hold, IEEE Transactions on Automatic Control, vol.57, issue.5, pp.1141-1154, 2012.

I. Karafyllis and M. Krstic, Sampled-data boundary feedback control of 1-D parabolic PDEs, Automatica, vol.87, pp.226-237, 2018.

S. Koga, I. Karafyllis, and M. Krstic, Sampled-data control of the Stefan system

H. Logemann, R. Rebarber, and S. Townley, Stability of infinite-dimensional sampleddata systems, Transactions of the American Mathematical Society, pp.3301-3328, 2003.

E. Lucien, H. Laurentiu, E. Denis, and P. Mihaly, Observer analysis and synthesis for Lipschitz nonlinear systems under discrete time-varying measurements, IFAC-PapersOnLine, vol.50, issue.1, pp.2941-2946, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01508776

L. Jose, R. A. Mancilla-aguilar, and . García, On converse Lyapunov theorems for ISS and iISS switched nonlinear systems, Systems & Control Letters, vol.42, issue.1, pp.47-53, 2001.

P. Martinez, Precise decay rate estimates for time-dependent dissipative systems, Israel Journal of Mathematics, vol.119, issue.1, pp.291-324, 2000.

S. Marx, C. Eduardo, P. Christophe, and A. Vincent, Global stabilization of a Korteweg-de Vries equation with saturating distributed control, SIAM Journal on Control and Optimization, vol.55, issue.3, pp.1452-1480, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01367622

S. Marx and G. Mazanti, L p -asymptotic stability analysis of a 1D wave equation with a boundary nonmonotone damping
URL : https://hal.archives-ouvertes.fr/hal-02463413

F. Mazenc, V. Andrieu, and M. Malisoff, Continuous-discrete observers for time-varying nonlinear systems: A tutorial on recent results, Proceedings of the SIAM Conference on Control and its Applications, pp.181-188, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01257347

F. Mazenc and E. Fridman, Predictor-based sampled-data exponential stabilization through continuous-discrete observers, Automatica, vol.63, pp.74-81, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01248072

G. P. Menzala, C. F. Vasconcellos, and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Quarterly of Applied Mathematics, vol.60, pp.111-129, 2002.

A. Mironchenko and C. Prieur, Input-to-state stability of infinite-dimensional systems: Recent results and open questions

A. Mironchenko and F. Wirth, A note on input-to-state stability of linear and bilinear infinitedimensional systems, 54th IEEE Conference on Decision and Control (CDC), pp.495-500, 2015.

A. Mironchenko and F. Wirth, Lyapunov characterization of input-to-state stability for semilinear control systems over Banach spaces, Systems & Control Letters, vol.119, pp.64-70, 2018.

A. Mironchenko and F. Wirth, Existence of non-coercive Lyapunov functions is equivalent to integral uniform global asymptotic stability, Mathematics of Control, Signals, and Systems, vol.31, issue.2, pp.1-26, 2019.

A. Mironchenko and F. Wirth, Non-coercive Lyapunov functions for infinite-dimensional systems, J. Differential Equations, vol.266, issue.11, pp.7038-7072, 2019.

A. Pazy, On the applicability of Lyapunov's theorem in Hilbert space, SIAM Journal on Mathematical Analysis, vol.3, issue.2, pp.291-294, 1972.

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, 1983.

P. Pepe and E. Fridman, On global exponential stability preservation under sampling for globally Lipschitz time-delay systems, Automatica, vol.82, pp.295-300, 2017.

P. Pepe, P. Zhong, and . Jiang, A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems, Systems & Control Letters, vol.55, issue.12, pp.1006-1014, 2006.

P. Pepe and I. Karafyllis, Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hale's form, International Journal of Control, vol.86, issue.2, pp.232-243, 2013.

P. Pepe, I. Karafyllis, and Z. P. Jiang, Lyapunov-Krasovskii characterization of the input-to-state stability for neutral systems in Hale's form, Systems & Control Letters, vol.102, pp.48-56, 2017.

L. Rosier and B. Zhang, Control and stabilization of the Korteweg-de Vries equation: recent progresses, Journal of Systems Science and Complexity, vol.22, issue.4, pp.647-682, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00600652

E. D. Sontag, Comments on integral variants of ISS, Systems & Control Letters, vol.34, issue.1, pp.93-100, 1998.

E. D. Sontag and Y. Wang, On characterizations of the input-to-state stability property, Systems & Control Letters, vol.24, issue.5, pp.351-359, 1995.

A. R. Teel, Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem, IEEE Transactions on Automatic Control, vol.43, issue.7, pp.960-964, 1998.

M. Wakaiki and Y. Yamamoto, Stability analysis of perturbed infinite-dimensional sampleddata systems

G. F. Webb, Autonomous nonlinear functional differential equations and nonlinear semigroups, Journal of Mathematical Analysis and Applications, vol.46, issue.1, pp.1-12, 1974.

N. Yeganefar, P. Pepe, and M. Dambrine, Input-to-state stability of time-delay systems: a link with exponential stability, IEEE Transactions on Automatic Control, vol.53, issue.6, pp.1526-1531, 2008.