L. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst, vol.100, issue.1, pp.80004-80013, 1999.

P. Ladevèze, G. Puel, and T. Romeuf, Lack of knowledge in structural model validation, Comput. Methods in Appl. Mech. Eng, vol.195, issue.37, pp.4697-4710, 2006.

S. Daouk, F. Louf, O. Dorival, and L. Champaney, On the lack-of-knowledge theory for low and high values of uncertainties, 2nd International Symposium on Uncertainty Quantification and Stochastic Modeling, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01023550

S. Daouk, F. Louf, O. Dorival, L. Champaney, and S. Audebert, Uncertainties in structural dynamics: overview and comparative analysis of methods, Mech.& Ind, vol.16, issue.4, p.404, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01183149

C. Soize, Stochastic modeling of uncertainties in computational structural dynamics -recent theoretical advances, J. Sound Vib, vol.332, issue.10, pp.2379-2395, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00743699

G. Stefanou, The stochastic finite element method: Past, present and future, Comput. Methods in Appl. Mech. Eng, vol.198, issue.9, pp.1031-1051, 2009.

M. Shinozuka and C. J. , Random eigenvalue problems in structural analysis, AIAA J, vol.10, issue.4, pp.456-462, 1972.

M. Papadrakakis and A. Kotsopulos, Parallel solution methods for stochastic finite element analysis using monte carlo simulation, Comput. Methods in Appl. Mech. Eng, vol.168, issue.1, pp.147-156, 1999.

S. Adhikari and M. Friswell, Random matrix eigenvalue problems in structural dynamics, Int. J. Numer. Meth. Engng, vol.69, issue.3, pp.562-591, 2007.

J. D. Collins and W. T. Thomson, The eigenvalue problem for structural systems with statistical properties, AIAA J, vol.7, issue.4, pp.642-648, 1969.

B. V. Nieuwenhof and J. Coyette, Modal approaches for the stochastic finite element analysis of structures with material and geometric uncertainties, Comput. Methods in Appl. Mech. Eng, vol.192, issue.33, pp.3705-3729, 2003.

R. Ghanem and P. D. Spanos, Polynomial chaos in stochastic finite elements, J. Appl. Mech, vol.57, issue.1, pp.197-202, 1990.

R. Ghanem and D. Ghosh, Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition, Int. J. Numer. Methods Eng, vol.72, issue.4, pp.486-504, 2007.

G. Blatman and B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression, J. Comput. Phys, vol.230, issue.6, pp.2345-2367, 2011.

J. Sinou, J. Didier, and B. Faverjon, Stochastic non-linear response of a flexible rotor with local nonlinearities, Int. J. Non Linear Mech, vol.74, pp.92-99, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01264811

N. Wiener, The homogeneous chaos, Am. J. Math, vol.60, issue.4, pp.897-936, 1938.

G. Blatman and B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Probab. Eng. Mech, vol.25, issue.2, pp.183-197, 2010.

A. Gallina, L. Pichler, and T. Uhl, Enhanced meta-modelling technique for analysis of mode crossing, mode veering and mode coalescence in structural dynamics, Mech. Syst. Sig. Process, vol.25, issue.7, pp.2297-2312, 2011.

V. Dubourg, B. Sudret, and F. Deheeger, Metamodel-based importance sampling for structural reliability analysis, Probab. Eng. Mech, vol.33, pp.47-57, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00590604

T. Kato, Perturbation Theory for Linear Operators, p.623, 1980.

P. Nair and A. Keane, An approximate solution scheme for the algebraic random eigenvalue problem, J. Sound Vib, vol.260, issue.1, pp.45-65, 2003.

M. Kami?ski, The Stochastic Perturbation Method for Computational Mechanics: Practical Applications in Science and Engineering, 2013.

W. K. Liu, T. Belytschko, and A. Mani, Random field finite elements, Int. J. Numer. Methods Eng, vol.23, issue.10, pp.1831-1845, 1986.

M. Kami?ski, Generalized stochastic perturbation technique in engineering computations, Math. Comput. Modell, vol.51, issue.3-4, pp.272-285, 2010.

M. Ghienne, C. Blanzé, and L. Laurent, Stochastic model reduction for robust dynamical characterization of structures with random parameters, C.R. Mec, vol.345, issue.12, pp.844-867, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01612787

H. Baumgärtel, Analytic perturbation theory for matrices and operators, vol.15, 1985.

L. Xiong, B. Nennig, Y. Aurégan, and W. Bi, Sound attenuation optimization using metaporous materials tuned on exceptional points, J. Acoust. Soc. Am, vol.142, issue.4, pp.2288-2297, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01622702

R. O. Akinola, M. A. Freitag, and A. Spence, The computation of Jordan blocks in parameter-dependent matrices, IMA J. Numer. Anal, vol.34, issue.3, pp.955-976, 2014.

A. Seyranian and A. Mailybaev, Multiparameter stability theory with mechanical applications, vol.13, 2003.

C. Pierre, Mode localization and eigenvalue loci veering phenomena in disordered structures, J. Sound Vib, vol.126, issue.3, pp.485-502, 1988.

L. Dieci, A. Papini, A. Pugliese, and A. Spadoni, Continuous Decompositions and Coalescing Eigenvalues for Matrices Depending on Parameters, vol.2082, pp.173-264, 2014.

E. Manconi and B. Mace, Veering and strong coupling effects in structural dynamics, J. Vib. Acoust, vol.139, issue.2, p.21009, 2017.

X. Liu, Behavior of derivatives of eigenvalues and eigenvectors in curve veering and mode localization and their relation to close eigenvalues, J. Sound Vib, vol.256, issue.3, pp.551-564, 2002.

J. L. Bois, S. Adhikari, and N. Lieven, On the quantification of eigenvalue curve veering: a veering index, J. Appl. Mech, vol.78, issue.4, pp.41007-41008, 2011.

C. M. Bender and . Symmetry, Quantum and Classical Physics, 2018.

B. Nennig and E. Perrey-debain, A high order continuation method to locate exceptional points and to compute puiseux series with applications to acoustic waveguides, J. Comp. Phys
URL : https://hal.archives-ouvertes.fr/hal-02534498

M. , The derivatives of repeated eigenvalues and their associated eigenvectors, J. Vib. Acoust, vol.118, issue.3, pp.390-397, 1996.

M. Triantafyllou and G. Triantafyllou, Frequency coalescence and mode localization phenomena: A geometric theory, J. Sound Vib, vol.150, issue.3, pp.485-500, 1991.

A. L. Andrew, K. E. Chu, and P. Lancaster, Derivatives of eigenvalues and eigenvectors of matrix functions, SIAM J. Matrix Anal. Appl, vol.14, issue.4, pp.903-926, 1993.

D. V. Murthy and R. T. Haftka, Derivatives of eigenvalues and eigenvectors of a general complex matrix, Int. J. Num. Meth. Eng, vol.26, issue.2, pp.293-311, 1988.

E. T. Whittaker and G. N. Watson, A course of modern analysis, 1965.

A. A. Mailybaev, Computation of multiple eigenvalues and generalized eigenvectors for matrices dependent on parameters, Numer. Linear Algebra Appl, vol.13, issue.5, pp.419-436, 2006.

S. Christiansen and P. A. Madsen, On truncated taylor series and the position of their spurious zeros, Appl. num. math, vol.56, issue.1, pp.91-104, 2006.

A. Luongo, Eigensolutions of perturbed nearly defective matrices, J. Sound Vib, vol.185, issue.3, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00801833

A. P. Seyranian, O. N. Kirillov, and A. A. Mailybaev, Coupling of eigenvalues of complex matrices at diabolic and exceptional points, J. Phys. A, vol.38, issue.8, p.1723, 2005.

E. Hernández, A. Jáuregui, and A. Mondragón, Energy eigenvalue surfaces close to a degeneracy of unbound states: Crossings and anticrossings of energies and widths, Phys. Rev. E, vol.72, issue.2, p.26221, 2005.

H. Cartarius, J. Main, and G. Wunner, Exceptional points in the spectra of atoms in external fields, Phys. Rev. A, vol.79, p.53408, 2009.

R. Uzdin and R. Lefebvre, Finding and pinpointing exceptional points of an open quantum system, J. Phys. B, vol.43, issue.23, p.235004, 2010.

A. Welters, On explicit recursive formulas in the spectral perturbation analysis of a Jordan block, SIAM J. Matrix Anal. Appl, vol.32, issue.1, pp.1-22, 2011.

A. P. Seyranian and A. A. Mailybaev, Interaction of eigenvalues in multi-parameter problems, J. Sound Vib, vol.267, issue.5, 2003.

I. Lee and G. Jung, An efficient algebraic method for the computation of natural frequency and mode shape sensitivities-Part i. distinct natural frequencies, Comput. Struct, vol.62, issue.3, pp.206-210, 1997.