, Like in the proof of condition (M2) of Theorem 3.2, observe that since f (x 0 ) = 0, there exist local coordinates (w,z) in a neighborhood of x 0 , with w given by (4) andz of the from z = ?(w, z), bringing (?, h) into (5)-(6) with the unobserved subsystem

V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, vol.250, 1988.

J. P. Barbot, M. Fliess, and T. Floquet, An algebraic framework for the design of nonlinear observers with unknown inputs, Proc. IEEE CDC, pp.384-389, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00172366

S. Bingulac and R. Krtolica, On admissibility of pseudoobservability and pseudocontrollability indexes, IEEE Trans. Automat. Control, vol.32, issue.10, pp.920-922, 1987.

B. Dravie, P. Guillot, and G. Millérioux, Flatness and structural analysis as a constructive framework for private communication, Nonlinear Analysis: Hybrid Systems, vol.30, pp.92-105, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01778616

M. Fliess, J. Lévine, P. Martin, and P. Rouchon, A Lie-Bäcklund approach equivalence and flatness of nonlinear systems, IEEE Trans. Automat. Control, vol.44, issue.5, pp.922-937, 1999.

K. Fritzsche, Y. Guo, and K. Röbenack, Nonlinear control of non-observable non-flat mimo state space systems using flat inputs, 2019 23rd International Conference on System Theory, Control and Computing (ICSTCC), pp.173-179, 2019.

K. Fritzsche and K. Röbenack, On the computation of differentially flat inputs, Proc. of the 22nd ICSTCC, pp.12-19, 2018.

K. Fritzsche and K. Röbenack, On a generalized flat input definition and physical realizability, Proc. of the 21st IFAC World Congress. IFAC, 2020.

K. Graichen, V. Hagenmeyer, and M. Zeitz, A new approach to inversion-based feedforward control design for nonlinear systems, Automatica, vol.41, issue.12, pp.2033-2041, 2005.

R. Hermann and A. J. Krener, Nonlinear controllability and observability, IEEE Trans. Automat. Control, vol.22, issue.5, pp.728-740, 1977.

A. J. Krener and W. Respondek, Nonlinear observers with linearizable error dynamics, SIAM J. Control Optim, vol.23, issue.2, pp.197-216, 1985.

J. Lévine, Analysis and Control of Nonlinear Systems: A Flatness-Based Approach, 2009.

E. N. Lorenz, Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, vol.20, issue.2, pp.130-141, 1963.

F. Nicolau and W. Respondek, Flatness of multi-input control-affine systems linearizable via one-fold prolongation, SIAM J. Control Optim, vol.55, issue.5, pp.3171-3203, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01401062

F. Nicolau, W. Respondek, and J. P. Barbot, Constructing flat inputs for two-output systems, Proc. MTNS, pp.414-421, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01784360

F. Nicolau, W. Respondek, and J. P. Barbot, Flat inputs: Theory and applications, SIAM Journal on Control and Optimization, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02440452

F. Nicolau, W. Respondek, J. P. Barbot, and A. Ouslimani, Secure communication with the help of flat inputs for chaotic systems, 5th IFAC Conference on Analysis and Control of Chaotic Systems CHAOS, vol.51, pp.109-114, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02015257

P. J. Olver, Applications of Lie groups to differential equations, vol.107, 1986.

W. Respondek, Right and left invertibility of nonlinear control systems, Nonlinear controllability and optimal control, pp.133-176, 1990.

W. Respondek, Symmetries and minimal flat outputs of nonlinear control systems, New Trends in Nonlinear Dynamics and Control and their Applications, volume LNCIS 295, pp.65-86, 2003.

O. E. Rössler, An equation for continuous chaos, Phys. Let. A, vol.57, issue.5, pp.397-398, 1976.

R. Schenkendorf and M. Mangold, Parameter identification for ordinary and delay differential equations by using flat inputs, Theoretical Foundations of Chemical Engineering, vol.48, issue.5, pp.594-607, 2014.

J. Stumper, F. Svaricek, and R. Kennel, Trajectory tracking control with flat inputs and a dynamic compensator, European Control Conference (ECC), pp.248-253, 2009.

I. A. Tall, Flow-box theorem and beyond, Afr. Diaspora J. Math. (N.S.), vol.11, issue.1, pp.75-102, 2011.

P. V. Tan, G. Millérioux, and J. Daafouz, Invertibility, flatness and identifiability of switched linear dynamical systems: an application to secure communications, 47th IEEE CDC'08, pp.959-964, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00331829

P. V. Tan, G. Millérioux, and J. Daafouz, Left invertibility, flatness and identifiability of switched linear dynamical systems: a framework for cryptographic applications, International Journal of Control, vol.83, issue.1, pp.145-153, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00445929

S. Waldherr and M. Zeitz, Conditions for the existence of a flat input, Internat. J. Control, vol.81, issue.3, pp.439-443, 2008.

S. Waldherr and M. Zeitz, Flat inputs in the mimo case, IFAC Proceedings Volumes, vol.43, pp.695-700, 2010.

X. H. Xia and W. B. Gao, Non-linear observer design by observer canonical forms. Internat, J. Control, vol.47, issue.4, pp.1081-1100, 1988.