Skip to Main content Skip to Navigation
Conference papers

Subspace clustering et degrés de typicité d'attributs : une étude prospective

Abstract : Subspace clustering can offer, beside a decomposition of data into homogeneous and distinct clusters, a characterisation of the subspaces in which the clusters live. This paper explores the possibility of capturing the notion of characteristic features in the framework of typicality degrees , as typical features. To that aim, it discusses the notion of typicality degrees for features and proposes an Alternating Cluster Estimation algorithm, named TbSC, to exploit these degrees within subspace clustering. It illustrates their differences experimentally using simple data sets.
Complete list of metadata

Cited literature [27 references]  Display  Hide  Download
Contributor : Adrien Revault d'Allonnes <>
Submitted on : Thursday, September 10, 2020 - 11:30:43 AM
Last modification on : Thursday, April 29, 2021 - 11:53:40 PM
Long-term archiving on: : Thursday, December 3, 2020 - 2:04:36 AM


Files produced by the author(s)


  • HAL Id : hal-02935306, version 1


Marie-Jeanne Lesot, Adrien Revault d'Allonnes. Subspace clustering et degrés de typicité d'attributs : une étude prospective. Rencontres Francophones sur la Logique Floue et ses Applications, Oct 2020, Sète, France. ⟨hal-02935306⟩



Record views


Files downloads