Learning musical pitch structures with hierarchical hidden Markov models - Université Paris 8 Vincennes - Saint-Denis Access content directly
Conference Papers Year :

Learning musical pitch structures with hierarchical hidden Markov models

Alan Smaill
  • Function : Author
  • PersonId : 871789
Peter Nelson
  • Function : Author
  • PersonId : 1089014

Abstract

In this paper we attempt to demonstrate the strengths of Hierarchical Hidden Markov Models (HHMMs) in the representation and modelling of musical structures. We show how relatively simple HHMMs, containing a minimum of expert knowledge, use their advantage of having multiple layers to perform well on tasks where flat Hidden Markov Models (HMMs) struggle. The examples in this paper show a HHMM's performance at extracting higherlevel musical properties through the construction of simple pitch sequences, correctly representing the data set on which it was trained.
Fichier principal
Vignette du fichier
8.Learning.pdf (1.49 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03114882 , version 1 (19-01-2021)

Identifiers

  • HAL Id : hal-03114882 , version 1

Cite

Michèle Weiland, Alan Smaill, Peter Nelson. Learning musical pitch structures with hierarchical hidden Markov models. Journées d'Informatique Musicale 2005, Association Française d'Informatique Musicale; Centre de recherche en Informatique et Création Musicale, Jun 2005, Saint-Denis, France. ⟨hal-03114882⟩
10 View
16 Download

Share

Gmail Facebook Twitter LinkedIn More